Big Data Analytics (21CSH-471)

Big Data Frameworks

  1. Hadoop & Apache Spark and their Comparison;
  2. NoSQL databases:
    1. MongoDB
    2. Cassandra**
    3. HBase
  3. Big Data Visualization Tools:
    1. Tableau
    2. Power BI
    3. Zeppelin
  4. Real-Time Big Data Processing:
    1. Apache Storm and Flink
    2. Emerging trends in Big Data Technologies.

Big SQL and NO SQL Databases**

  1. Overview of SQL vs. NoSQL:
    1. Differences and Use Cases;
  2. Introduction to Big SQL:
    1. Big SQL Features –
      1. Scalability, support for structured and unstructured data
      2. Query optimization Techniques in Big SQL
  3. NoSQL Database Types:
    1. Key-Value stores (Redis, DynamoDB),
    2. Document stores (CouchDB),
    3. Column-family stores (Cassandra**, HBase),
  4. Graph Databases (Neo4j);
  5. Advantages and limitations of Big SQL and NoSQL.

AI in Big Data

  1. Introduction to IBM Watson:**
    1. Overview and capabilities of Watson AI
    2. Watson’s role in Big data and decision-making
  2. Key Watson Services:
    1. Watson Discovery
    2. Watson Studio**
    3. Watson Assistant
    4. Integration of Watson with Big Data tools
  3. AI and Machine Learning Applications in Big Data:
    1. Tools such as Apache Kafka and Flink
  4. Real-World Big Data Architecture:
    1. Natural Language Processing (NLP),
    2. Sentiment Analysis
    3. Predictive Analytics.

Data Visualization (21CSH-461)

Chapter 1: Visualization Techniques