Big Data Analytics (21CSH-471)
Big Data Frameworks
- Hadoop & Apache Spark and their Comparison;
- NoSQL databases:
- MongoDB
- Cassandra**
- HBase
- Big Data Visualization Tools:
- Tableau
- Power BI
- Zeppelin
- Real-Time Big Data Processing:
- Apache Storm and Flink
- Emerging trends in Big Data Technologies.
Big SQL and NO SQL Databases**
- Overview of SQL vs. NoSQL:
- Differences and Use Cases;
- Introduction to Big SQL:
- Big SQL Features –
- Scalability, support for structured and unstructured data
- Query optimization Techniques in Big SQL
- NoSQL Database Types:
- Key-Value stores (Redis, DynamoDB),
- Document stores (CouchDB),
- Column-family stores (Cassandra**, HBase),
- Graph Databases (Neo4j);
- Advantages and limitations of Big SQL and NoSQL.
AI in Big Data
- Introduction to IBM Watson:**
- Overview and capabilities of Watson AI
- Watson’s role in Big data and decision-making
- Key Watson Services:
- Watson Discovery
- Watson Studio**
- Watson Assistant
- Integration of Watson with Big Data tools
- AI and Machine Learning Applications in Big Data:
- Tools such as Apache Kafka and Flink
- Real-World Big Data Architecture:
- Natural Language Processing (NLP),
- Sentiment Analysis
- Predictive Analytics.
Data Visualization (21CSH-461)
Chapter 1: Visualization Techniques